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Flow analysis from multiparticle azimuthal correlations
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We present a new method for analyzing directed and elliptic flow in heavy-ion collisions. Unlike standard
methods, it separates the contribution of flow to azimuthal correlations from contributions due to other effects.
The separation relies on a cumulant expansion of multiparticle azimuthal correlations, and includes corrections
for detector inefficiencies. This new method allows the measurement of the flow of identified particles in
narrow phase-space regions, and can be used in every regime, from intermediate to ultrarelativistic energies.
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I. INTRODUCTION

In noncentral heavy-ion collisions, it is possible to me
sure azimuthal distributions of outgoing particles with r
spect to the reaction plane. This is the so-called ‘‘flow ana
sis,’’ which is being actively studied over a wide range
colliding energies, from below 25 MeV per nucleon in th
center-of-mass system@1# to above 60 GeV@2#. The main
motivation for such studies is that anisotropies in the a
muthal distributions are likely to contain much informatio
on the physics in the hot, dense central region of the collis
~see @3–5# for reviews!. In particular, they may provide a
signature of the formation of a quark-gluon plasma at
trarelativistic energies@6,7#. Azimuthal distributions may
also be of interest in connection with more exotic pheno
ena, such as the formation of disoriented chiral condens
@8,9#, or the study of parity and/or time-reversal violatio
@10#. Finally, the combination of flow analysis and two
particle interferometry yields a three-dimensional picture
the emitting source@11–13#, as was shown recently at th
Brookhaven alternating gradient synchrotron@14#.

In this paper, we propose a new method to measure
muthal distributions. As usual, they will be characterized
their Fourier coefficients@15#,

vn[^ein(f2FR)&5^cosn~f2FR!&, ~1!

wheref is the azimuthal angle of an outgoing particle me
sured in the laboratory coordinate system,FR is the azimuth
of the impact parameter~or reaction plane!, and angular
brackets denote a statistical average, over many events.
first two coefficientsv1 and v2 are usually referred to a
directed flow and elliptic flow, respectively. Thevn’s can be
measured for various particle species, as a function of tra
verse momentum and/or rapidity: we refer to these deta
measurements as ‘‘differential’’ flow, following Ref.@16#. In
this paper, we also discuss global measurements ofvn , av-
eraged over a large phase-space region, typically corresp
ing to the acceptance of a detector. We call this ‘‘integrate
flow.

Since the reaction planeFR cannot be measured directl
the only way to obtain the coefficientsvn experimentally is
to deduce them from the azimuthal correlations between
0556-2813/2001/64~5!/054901~23!/$20.00 64 0549
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outgoing particles: the correlation between every particle
the reaction plane induces correlations among the parti
~which we call hereafter the ‘‘flow correlations’’!, from
which vn can be reconstructed. The method we propose h
is based on a systematic analysis of multiparticle azimu
correlations.

The most widely used method for the flow analysis is th
initially proposed by Danielewicz and Odyniec@17# ~see also
@18–20# for further developments!, which relies on azi-
muthal correlations between two ‘‘subevents.’’ It has recen
been applied at intermediate energies in Darmstadt@1,21#,
and at higher energies in Dubna@22#, at the Brookhaven
AGS @23–25#, at the CERN super proton synchrotron~SPS!
@26,27# and, finally, at the Brookhaven relativistic heavy io
collider ~RHIC! @2#. An alternative, simpler method extrac
flow from two-particle correlations@28# and is still in use,
both at intermediate@29# and at ultrarelativistic energie
@30,31#. Both methods are more or less equivalent: corre
ing two subevents amounts to summing two-particle corre
tions. In these analyses, one usually assumes that the
sources of azimuthal correlations are flow and, when nec
sary, transverse momentum conservation@34#.

However, we have shown in two papers@32,33# that this
assumption is no longer valid at SPS energies, where
rect’’ nonflow two-particle correlations become of the sam
magnitude as the correlations due to flow. Even when n
flow correlations area priori smaller than flow correlations
they must be taken into account in order to obtain accu
and reliable results. Some sources of nonflow correlati
are well known. One can attempt to avoid them experim
tally by appropriate cuts in phase space@2#, or one can take
them into account in the analysis@18#, as was done for trans
verse momentum conservation@34,33#, for correlations from
p0→gg decays@35,36#, and for quantum correlations@32#.
But there is no systematic way to separate the effects of fl
from other effects at the level of two-particle correlations

There have been several attempts in the past to go bey
two-particle correlations: analyses of the global event sh
@37# allowed the first observations of collective flow at inte
mediate @38# and ultrarelativistic energies@39,40#, which
were not biased by nonflow correlations. Multiparticle a
muthal correlations were also used in Ref.@41#. These meth-
ods are now considered obsolete because they apply on
©2001 The American Physical Society01-1
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BORGHINI, DINH, AND OLLITRAULT PHYSICAL REVIEW C 64 054901
the ‘‘integrated’’ flow, as defined above, whereas most of
recent analyses concentrate on the differential flow of id
tified particles, in particular, kaons@24,42#, h mesons@21#,
L hyperons@25,43#, and antiprotons@44#.

In recent papers@45,46#, we have shown for the first time
that nonflow correlations can be removed systematically
only for integrated flow, but also in analyses of different
flow. However, a limitation of this method when measuri
vn is the interference with higher harmonics (v2n , v3n , etc.!.
This interference may hinder the measurement of direc
flow when elliptic flow is larger, which is likely to be the
case at RHIC energies@47#.

Here we present an improvement of this method, which
free from this limitation, and in many respects simpler.
particular, it no longer involves the event flow vector o
which most analyses are based@17,18,45#. As in our previous
method, we perform a cumulant expansion of multiparti
azimuthal correlations, which eliminates order by order n
flow correlations, and can be used even if the detector d
not have full azimuthal coverage.

In Sec. II, we show how to construct the cumulants
multiparticle azimuthal correlations by means of a genera
function. These cumulants allow us to reconstruct the in
grated flow from the measured correlations. The metho
extended to differential flow in Sec. III. The relation wit
other methods is discussed in Sec. IV. Results of Mo
Carlo simulations are presented in Sec. V. The most techn
points are left to appendices: the construction of cumulan
explained in detail in Appendix A; interpolation formula
used to obtain the cumulants from the generating func
are given in Appendix B; acceptance corrections, which
tend the validity of the method to detectors with partial a
muthal coverage, are derived in Appendix C; finally, statis
cal errors on the flow values deduced from the cumulants
evaluated in Appendix D.

The essential improvement on our previous method is
use of a new generating function, defined in Sec. II B, wh
corrects the limitations encountered in Ref.@45#. These im-
provements are discussed in detail in Sec. IV and in App
dix A; they are seen clearly in the simulations presented
Sec. V. In addition, the detailed discussions of accepta
corrections~Appendix C! and statistical errors~Appendix D!
are completely new, although they also apply to our previ
method. Apart from these differences, most of the mate
discussed in Secs. II and III can be found in Ref.@45#, al-
though the present derivation is more transparent.

II. INTEGRATED FLOW

In Sec. II A, we illustrate with a few examples the pri
ciple of the cumulant expansion of multiparticle azimuth
correlations, and show how it can be used to perform fl
measurements with a better sensitivity than the previ
methods. Then we explain, in Sec. II B, how to perform t
expansion in practice, by means of a generating function
Sec. II C, we derive the relations between the cumulants
the flowvn , integrated over some phase-space region. Us
cumulants to various orders, one thus obtains different e
mates forvn . The uncertainties associated with each e
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mate due to nonflow correlations and limited statistics, a
the resulting optimal choice, are examined in Sec. II D.
nally, we discuss in Sec. II E the generalization of the pre
ous subsections to different, optimal particle weights.

A. Cumulants of multiparticle azimuthal correlations

We denote byf j , with j 51, . . . ,M , the azimuthal angles
of the particles seen in an event with multiplicityM, mea-
sured with respect to a fixed direction in the detector~this
was denoted byf̄ j in Ref. @45#!. In this paper, we shall be
concerned with multiparticle azimuthal correlations, whi
we write generally in the form̂ exp@in(f11•••1fk2fk11
2•••2fk1l)#&, wheren is the Fourier harmonic under stud
(n51 for directed flow,n52 for elliptic flow!, and the
brackets indicate an average that is performed in two st
first, one averages over all possible combinations ofk1 l
particles detected in the same event; then, one averages
all events.

Correlations betweenk1 l particles can be generally de
composed into a sum of terms involving correlations b
tween a smaller number of particles. Consider for insta
the measured two-particle azimuthal correlati
^ein(f12f2)&. It can be written as

^ein(f12f2)&5^einf1&^e2 inf2&1^^ein(f12f2)&&, ~2!

where^^ein(f12f2)&& is by definition the second-order cumu
lant. To understand the physical meaning of this quantity,
first consider a detector whose acceptance is isotropic,
which does not depend onf. Such a detector will be called
a ‘‘perfect’’ detector. Then, the average^einf j& vanishes by
symmetry@sincef j is measured in the laboratory, not wit
respect to the reaction plane,^einf j& does not correspond to
the flow vn defined in Eq.~1!#: the first term on the right-
hand side~rhs! of Eq. ~2! vanishes and the cumulant reduc
to the measured two-particle correlation.

The relevance of the cumulant appears when conside
the more realistic case of a detector with uneven accepta
Then, the first term on the rhs of Eq.~2! can be nonvanish-
ing. But the cumulant vanishes iff1 and f2 are uncorre-
lated. Thus the cumulant^^ein(f12f2)&& isolates the physica
correlation, and disentangles it from trivial detector effec

There are several physical contributions to the correlat
^^ein(f12f2)&&, which separate into flow and nonflow~or di-
rect! correlations. When the source is isotropic~no flow!,
only direct correlations remain. They scale with the mu
plicity M as 1/M @32,33#, as can be easily understood whe
considering correlations between the decay products o
resonance: when ar meson decays into two pions, mome
tum conservation induces an angular correlation of or
unity between the decay pions; besides, the probability
two arbitrary pions seen in the detector result from the sa
r decay scales with the total number of pions as 1/M . All in
all, the correlation between two arbitrary pions is of ord
1/M . If the source is not isotropic, flow, which is by defin
tion a correlation between emitted particles and the reac
plane, generates azimuthal correlations between any two
going particles, and gives a contributionvn

2 to the second-
1-2
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FLOW ANALYSIS FROM MULTIPARTICLE AZIMUTHA L . . . PHYSICAL REVIEW C 64 054901
order cumulant, as will be explained in Sec. II C. One c
measure the flow using the second-order cumulant if
contribution dominates over the nonflow contribution, i.e.
vn@1/AM @32,33#. This is the domain of validity of standar
flow analyses, which are based on two-particle correlatio

Our main point is that through the construction of high
order cumulants, one can separate flow and nonflow corr
tions. To illustrate how this works, we consider for simplici
a perfect detector. Then, we decompose the measured
particle correlation as follows:

^exp@ in~f11f22f32f4!#&5^ein(f12f3)&^ein(f22f4)&

1^ein(f12f4)&^ein(f22f3)&

1^^exp@ in~f11f22f3

2f4!#&&. ~3!

If the particles are correlated pairwise, there are two poss
combinations leading to a nonvanishing value for the le
hand side: the pairs can be either~1,3! and~2,4!, or ~1,4! and
~2,3!. This yields the first two terms in the right-hand sid
The remaining term̂^exp@ in(f11f22f32f4)#&&, which
is by definition the fourth-order cumulant, is thus insensit
to two-particle nonflow correlations. However, it may still b
influenced by higher-order nonflow correlations: if, for i
stance, a resonance decays into four particles, the resu
correlations between the reaction products do not factoriz
in Eq. ~3!. We call such correlations ‘‘direct’’ four-particle
correlations. Fortunately, their contribution to the fourt
order cumulant is very small: it scales with the multiplici
as 1/M3 @45#, while the measured correlation̂exp@ in(f1
1f22f32f4)#& is generally much larger, of order 1/M2

@the two-particle correlation terms in the rhs of Eq.~3! are of
order 1/M , as explained above#. On the other hand, flow
yields a contribution2vn

4 to the cumulant, as we shall see
Sec. II C. Therefore, the cumulant is dominated by the fl
as soon asvn@1/M3/4. This is a major improvement on two
particle correlations, which are limited by the much strong
constraintvn@1/AM .

Equation~3! can be rewritten as

^exp@ in~f11f22f32f4!#&52^ein(f12f3)&2

1^^exp@ in~f11f22f3

2f4!#&&, ~4!

where we have used the symmetry betweenf1 andf2 ~resp.
f3 andf4). However, Eqs.~3! and ~4! only hold for a per-
fect detector, therefore they are of little practical use. It is
fact possible to build an expression for the fourth-order
mulant that eliminates both detector effects and nonflow c
relations, but this expression is very long. This is the rea
why we introduce a generating function of cumulants in S
II B. It will enable us to construct easily cumulants of arb
trary orders for arbitrary detectors.

More generally, the cumulant^^exp@in(f11•••1fk
2fk112•••2fk1l)#&&, which involvesk1 l particles, is of
order M12k2 l when there is no flow. It eliminates all non
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flow correlations up to orderk1 l 21. Only direct correla-
tions betweenk1 l particles remain. Cumulants withkÞ l
vanish for a perfect detector and are physically irreleva
The interesting cumulants are the ‘‘diagonal’’ ones, withk
5 l , as in Eqs.~2! and~4!. The contribution of flow to these
cumulants, proportional tovn

2k , will be evaluated precisely in
Sec. II C. When this contribution dominates over the no
flow contribution, the measured cumulant yields an estim
of the value ofvn , which we denote byvn$2k%, wherek
.0 is in principle arbitrary.

B. Generating function

Cumulants can be expressed elegantly, and without
suming a perfect detector as in Eq.~4!, using the formalism
of generating functions. For each event, we define the r
valued functionGn(z), which depends on the complex var
ablez5x1 iy ,

Gn~z!5)
j 51

M S 11
z* einf j1ze2 inf j

M D
5)

j 51

M S 11
2x cos~nf j !12y sin~nf j !

M D , ~5!

wherez* [x2 iy denotes the complex conjugate. This ge
erating function can then be averaged over events with
same multiplicityM. We denote this statistical average b
^Gn(z)&. Its expansion in power series generates measu
azimuthal correlations to all orders,

^Gn~z!&511
z

M K (
j 51

M

e2 inf jL 1
z*

M K (
j 51

M

einf jL
1

z2

M2K (
j ,k

e2 in(f j 1fk)L 1
z* 2

M2 K (j ,k
ein(f j 1fk)L

1
zz*

M2 K (
j Þk

ein(f j 2fk)L 1•••

511z^e2 inf1&1z* ^einf1&

1
M21

M S z2

2
^e2 in(f11f2)&1

z* 2

2
^ein(f11f2)&

1zz* ^ein(f12f2)& D1•••, ~6!

where the averages^einf1&, ^ein(f12f2)&, etc. are the same a
defined in Sec. II A. More generally, expanding^Gn(z)& to
order z* kzl yields, up to a numerical coefficient, th
(k1 l )-particle correlation^exp@in(f11•••1fk2fk112•••

2fk1l)#&. The generating function̂Gn(z)& thus contains all
the information on measured multiparticle azimuthal corre
tions.

If the detector is perfect, the statistical average^Gn(z)&
does not depend on the phase ofz; it only depends onuzu
5Ax21y2. To see this, one may note that changingz into
zeina in the generating function~5! amounts to shifting all
1-3
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BORGHINI, DINH, AND OLLITRAULT PHYSICAL REVIEW C 64 054901
angles by the same quantityf j→f j2a. Now, the probabil-
ity for an event to occur is unchanged under a global ro
tion; therefore^Gn(z)& is unchanged under this rotation
hence the result. In this case, the only terms that remai
the power-series expansion are the isotropic terms, pro
tional to zkz* k, which involve only relative angles.

The generating function provides us with a way to obt
a compact expression for cumulants of arbitrary orders.
define the generating function of the cumulantsCn(z) by

Cn~z![M @^Gn~z!&1/M21#. ~7!

The expansion of this function in power series ofz and z*
defines the cumulants as

Cn~z![(
k,l

z* kzl

k! l !
^^exp@ in~f11•••1fk2fk112•••

2fk1 l !#&&. ~8!

One easily checks that if the particles are uncorrelated
the cumulants vanish beyond order one, i.e., fork1 l>2.
Indeed, if all thef j in Eq. ~5! are independent from eac
other, the mean value of the product is the product of
mean values, so that

^Gn~z!&5S 11
z* ^einf&1z^e2 inf&

M D M

. ~9!

The generating function of cumulants, Eq.~7!, then reduces
to

Cn~z!5z* ^einf&1z^e2 inf&. ~10!

Comparing with Eq.~8!, cumulants of order 2 and highe
vanish when particles are uncorrelated, as expected.

The cumulant^^ein(f12f2)&& obtained when expandin
Eqs.~7! and~8! to orderzz* coincides with the second-orde
cumulant defined in Eq.~2! in the limit of large M ~see
Appendix A!. ExpandingCn(z) to orderz2z* 2, one obtains
an expression for the cumulant^^ein(f11f22f32f4)&& that
reduces to Eq.~4! for a perfect detector. But the expressio
derived from Eqs.~7! and~8! is still valid with an imperfect
detector, while Eq.~4! is not.

As mentioned in Sec. II A, cumulants withkÞ l vanish for
a perfect detector, since the generating functionCn(z) in Eq.
~8! depends only onuzu. The interesting cumulants are th
diagonal terms withk5 l , which are related to the flow. W
denote them bycn$2k%,

cn$2k%[^^ein(f11•••1fk2fk112•••2f2k)&&. ~11!

In practice, expanding the generating functionCn(z) analyti-
cally is rather tedious beyond order 2. The simplest way
extractcn$2k% is to tabulate the generating function~7!, and
then compute numerically the coefficients of its power-se
expansion, using interpolation formulas that can be found
Appendix B1.

Finally, we have assumed here that the multiplicityM is
exactly the same for all events involved in the analysis.
practice, one performs the flow analysis for a class of eve
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belonging to the same centrality interval, andM fluctuates
from one event to the other. That explains our introduc
the factor 1/M in the definition of the generating functio
~5!, as explained in more detail in Appendix A. The avera
over eventŝGn(z)& then involves an average overM, andM
must be replaced by its average value^M & in the definition
of the cumulants, Eq.~7!. This, however, leads to errors
especially when the acceptance is bad~see Appendix A!.
This point will also be illustrated by the simulations pr
sented in Sec. V. In order to avoid these effects, one may
only a randomly selected subset of the detected partic
with a fixed multiplicityM, to construct the generating func
tion.

C. Contribution of flow to the cumulants

Let us evaluate the contribution of flow to the cumulan
cn$2k%. For simplicity, we assume that the detector is p
fect. The generalization to an uneven acceptance is
formed in Appendix C1 . Under this assumption, one eas
calculates the generating function^Gn(z)& and, from it, the
values of the cumulants.

Let us callFR the azimuthal angle of the reaction plane
a given event. The average over events can be performe
two steps: one first estimates the average over all events
the sameFR ; then one averages overFR . We denote by
^xuFR& the average of a quantityx for fixed FR . With this
notation, the definition ofvn , Eq. ~1!, gives

^einf j uFR&5vneinFR. ~12!

Neglecting, for simplicity, nonflow correlations between pa
ticles, we obtain from Eq.~5!

^Gn~z!uFR&5S 11
zvne2 inFR1z* vneinFR

M D M

. ~13!

One must then average overFR :

^Gn~z!&5E
0

2p

^Gn~z!uFR&
dFR

2p
. ~14!

Inserting Eq.~13! in this expression, one obtains

^Gn~z!&5 (
k50

[ M /2]
M !

~M22k!! ~k! !2 S vn

M D 2k

uzu2k

.I 0~2vnuzu!, ~15!

where, in the last equation, we have assumed thatM is large,
so thatM !/( M22k)! 5M2k and one may extend the sum
over k to infinity. I 0 denotes the modified Bessel function
the first kind. The result depends only onuzu, as expected
from the discussion in Sec. II C.

The generating function of the cumulants~7! now reads

Cn~z!.M ~ I 0~2vnuzu!1/M21!. lnI 0~2vnuzu!. ~16!

This equation can be expanded in power series. Compa
with Eq. ~8!, the cumulants withkÞ l vanish, as expected fo
a perfect detector, while the diagonal cumulantscn$2k% de-
1-4
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FLOW ANALYSIS FROM MULTIPARTICLE AZIMUTHA L . . . PHYSICAL REVIEW C 64 054901
fined by Eq. ~11! are related tovn . From the measured
cn$2k%, one thus obtains an estimate ofvn , which is denoted
by vn$2k%. The lowest-order estimates are

vn$2%2[cn$2%, ~17a!

vn$4%4[2cn$4%, ~17b!

vn$6%6[cn$6%/4. ~17c!

When the detector acceptance is far from isotropic, as is
case of the PHENIX detector at RHIC@31#, which covers
approximately half the range in azimuth, these relations
longer hold. The issue of acceptance corrections, discu
in detail in Appendix C, is more subtle than might be thoug
first, for the following reason: when there is some flow, t
probability that a particle be detected depends on the or
tation of the reaction planeFR if the detector only has partia
azimuthal coverage. Hence, if a fixed number of particles
emitted, the number of particles seen in the detector depe
on FR . Reciprocally, for a fixed value of the multiplicityM
seen in the detector, the probability distribution ofFR is not
uniform, which creates an important bias in the flow ana
sis. In the calculations of Appendix C1, we assume the c
trality selection is done by anindependentdetector~for in-
stance, a zero-degree calorimeter! which has ~at least
approximately! full azimuthal coverage, so that the distrib
tion of FR is uniform for the sample of events used in t
flow analysis.

Under this assumption, one can derive general relati
between the cumulants and the flow. It turns out that,
general,cn$2k% depends not only onvn , but also on other
harmonicsvp with pÞn. In order to obtain the correspond
ing relations, we introduce the acceptance functionA(f),
which is the probability that a particle with azimuthal ang
f be detected. The Fourier coefficients of this accepta
function are

ap[E
0

2p

e2 ipfA~f!
df

2p
. ~18!

The relations between the cumulantscn$2k% and the esti-
matesvp$2k% involve these coefficients. They are derived
Appendix C1, to leading order invp . The results for directed
flow and elliptic flow are given by Eqs.~C6! and ~C7!, re-
spectively.

D. Errors

We now examine the orders of magnitude of system
errors, arising from unknown nonflow correlations, and s
tistical errors, due to the finite number of events availab
More precisely, we estimate the differencedvn$2k% between
the true integrated flowvn and its values reconstructed fro
the cumulants,vn$2k%, defined in Eqs.~17!. We show which
value of 2k minimizes the total uncertainty.

As explained in Sec. II A, nonflow 2k-particle correla-
tions give a contribution of orderM122k to the cumulant
cn$2k%. This is to be compared with the contribution of flo
derived in Sec. II C, of ordervn

2k . We may thus write
05490
e

o
ed
t

n-

re
ds

-
n-

s
n

e

ic
-
.

vn$2k%2k2vn
2k5O~M122k!, ~19!

which is an estimate of the systematic errordvn$2k% due to
nonflow correlations. Obviously, flow can be measured o
if vn

2k@M122k. For large ordersk@1, this condition be-
comes

vn@1/M , ~20!

which is a necessary condition for the flow to be measura
@45#. We believe there is no way to extract a flow of ord
1/M or smaller.

In this paper, we always assume that condition~20! is
fulfilled. If this is the case, the systematic error onvn given
by Eq. ~19!, dvn$2k%;(Mvn)122k, becomes smaller and
smaller ask increases: thus one should construct cumula
of orders as high as possible.

One must also take into account the statistical error,
to the finite number of eventsNevts available. The order of
magnitude of statistical errors can easily be understood.
cumulantcn$2k% involves correlations between 2k particles
belonging to the same event. There are roughlyM2k ways
~for large enoughM ) to choose 2k particles among theM
particles detected, and one averages over all possible co
nations. Since this is done for allNevts events, there is a tota
of M2kNevtssubsets of 2k particles involved in the evaluation
of the cumulants. The resulting statistical error is therefo

vn$2k%2k2vn
2k5OS 1

AM2kNevts
D . ~21!

Unlike the systematic error, the statistical error generally
creases with increasing cumulant order 2k ~it may in fact
decrease in some cases, but only slightly, see Appendix D!.
Therefore, the order 2k that gives the best compromise is th
one for which both statistical and systematic errors are of
same magnitude. Equating the right-hand sides of Eqs.~19!
and ~21!, one obtains the optimal cumulant order@45#

2kopt.21
lnNevts

lnM
. ~22!

In most of the practical cases, the fourth-order cumul
(2k54), that is, removing two-particle nonflow correlation
is to be preferred.

Statistical errors are discussed more thoroughly in App
dix D2. There, we derive exact formulas for the standa
deviations of the cumulants, and for their mutual corre
tions. Two regimes can be distinguished, depending on
value of the dimensionless parameterx[vnAM , which has
been used previously as a measure of the reaction plane
lution @20#. If x!1, the standard deviations agree with t
simple estimate~21!, and different estimatesvn$2k% and
vn$2l % with kÞ l are uncorrelated. Ifx@1, on the other
hand, they are strongly correlated and the standard statis
error becomes

d~vn$2k%!stat5
1

A2MNevts

, ~23!
1-5
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independent of the order 2k, and much larger than the est
mate~21!.

We also discuss in Appendix D2 the non-Gaussian ch
acter of the fluctuations of the estimatesvn$2k%, due to their
nonlinear relations with the cumulants, Eqs.~17!. In particu-
lar, statistical fluctuations may result in a ‘‘wrong’’ sign fo
the cumulant, in the sense thatvn$2k%2k defined by Eqs.~17!
is negative. If this happens, the flow clearly cannot be e
mated from the corresponding cumulant.

E. Nonunit weights

In the definition of the generating function, Eq.~5!, each
particle was given the same weight. A more general form

Gn~z!5)
j 51

M F11
wj

M
~z* einf j1ze2 inf j !G . ~24!

The weightwj can be any arbitrary function of the rapidityy
of the particle, its transverse momentumpT , its mass.

In order to obtain the highest accuracy on the flow m
surement,wj should be chosen proportional to the flow itse
as shown in Ref.@45# ~see also@48,49#!: the ideal weight is
w(pT ,y)}vn8(pT ,y), which is intuitively clear: one mus
give higher weights to particles with stronger flow. This
also the best choice if one uses the standard method, inv
ing the determination of the reaction plane.

Ideally, the flow analysis should be performed twice:
first measurement of the flow can be done with reasona
guesses for the weights; measuring differential flow a
function of y and pT for various particles~see Sec. III!, the
values obtained can be used as the new weights in a sec
more accurate analysis. This is the procedure recently
lowed in Ref.@24#.

A variety of weights have been used in analyses of
directed flowv1. Sincev1 changes sign at midrapidity, th
weight must be an odd function of the rapidity in the cent
of-mass frame. Most often, the weight is simply the sign
y, with @17# or without @50# a gap at midrapidity. A linear
dependence iny was used in Refs.@51–53#. The latter choice
is better, sincev1 is itself linear near midrapidity. The trans
verse momentum dependence ofw is most often linear, as in
the original paper@17#. Unit weights, independent ofpT , are
also widely used@21,26,54,55#. They are convenient, be
cause no particle identification is required. However, sin
v1 is linear inpT ~at least at lowpT @49#!, the original choice
w}pT is likely to give more accurate results, although t
opposite conclusion was reached in Ref.@54#. At intermedi-
ate energies one can in addition choose a weight proporti
to the mass of the particle, to take into account the fact
nuclear fragments flow more than do protons@56,57#.

Unlike directed flow, elliptic flow is an even function o
the center-of-mass rapidity; therefore, the weights are usu
chosen independently of rapidity. The weights are either
dependent of transverse momentum@2,18,26,35,36# or pro-
portional topT

2 @39,48,58#. The latter choice is more appro
priate if pT is measured, sincev2 is proportional topT

2 at low
pT @49#. At ultrarelativistic energies, however,v2 is almost
linear in pT above 100 MeV@2,59#. A better choice may be
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for instance,w(pT)5ApT
21p0

22p0, with p0.100 MeV:
this weight, quadratic at lowpT and linear at highpT ,
roughly reproduces the measuredpT dependence ofv2.

With a nonunit weightw, the following modifications
occur.

In the relations between the cumulants and the flow, i
Eqs.~17! for integrated flow, Eqs.~34! and~35! for differen-
tial flow, and the equations of Appendix C,vn now stands for
^wein(f2FR)&. Comparing with the previous definition, Eq
~1!, the flow is now weighted byw, as can be expected from
the definition of the generating function, Eq.~24!.

In the formulas giving the statistical errors, derived
Appendix D, one must in addition replaceM by M /^w2&. As
a consequence, the resolutionx2 appearing in Eqs.~D21!,
~D22!, ~D35!, and ~D36! now stands for x2

5M ^wvn&
2/^w2&.

In the interpolation formulas of Appendix B, the value
t0 @Eq. ~B1!# should be scaled by the typical value ofw, for
instance byA^w2&.

III. DIFFERENTIAL FLOW

When one has measured the flow integrated over ph
space, the next step is to move on to the ‘‘differential flow
analysis, i.e., the measurement of flow in a narrower pha
space window. We call a particle belonging to the window
interest a ‘‘proton’’ ~although it can be anything else!. We
denote byc its azimuthal angle, andvn8 its flow harmonics
~the so-called ‘‘differential flow’’!, vn8[^ein(c2FR)&. The
particles used to estimate the integrated flowvn are named
‘‘pions.’’

In order to measure the differential flow of the proton
we correlate their azimuthc with the pion azimuthsf j .
Once the integrated flowvn is known, one can reconstruc
the differential flowvn8 from this correlation, and also highe
harmonicsv2n8 , v3n8 , etc. It follows that differential elliptic
flow v28 can be reconstructed using either integrated direc
flow or integrated elliptic flow. Following Ref.@18#, we de-
note byvp/n8 the differential flowvp8 measured with respect t
integrated flowvn , wherep is a multiple ofn. At interme-
diate energies, one usually measuresv2/18 @21# while v2/28 is
more accurate at ultrarelativistic energies wherev1 becomes
very small@26#.

The differential flow is reconstructed by taking the cum
lants of azimuthal correlations between the proton and
pions. These are constructed in Sec. III A by means of
appropriate generating function. The subtraction of ‘‘autoc
relations,’’ in the case where the proton is one of the pions
briefly discussed in Sec. III B. In Sec. III C, we derive th
relations between the cumulants and the differential flo
vp/n8 . As in the case of integrated flow, cumulants of differe
orders yield different estimates ofvp/n8 . The optimal choice
is the one that minimizes uncertainties, discussed in S
III D.

A. Cumulants

To measure a proton differential flowvp8 , we first con-
struct a generating function of measured azimuthal corr
1-6
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tions between the proton and pions. This function is the
erage value over all protons ofeipcGn(z), whereGn(z) is
the generating function defined by Eq.~5!, evaluated for the
event to which the proton belongs. Note that the aver
procedure is not exactly the same as when studying i
grated flow. One must first average over the protons in
same event@i.e., with the sameGn(z)#; then, average ove
the events where there are ‘‘protons’’~if the ‘‘proton’’ is
some rare particle, or if the phase-space window is sm
there may be events without a proton!.

Expanding in power series ofz andz* , one obtains

^eipcGn~z!&5^eipc&1z^ei (pc2nf1)&1z* ^ei (pc1nf1)&1•••.
~25!

This generates measured azimuthal correlations betwee
proton and an arbitrary number of pions. The generat
function of the cumulants is a complex-valued function
the complex variablez,

Dp/n~z![
^eipcGn~z!&

^Gn~z!&
, ~26!

where^G(z)& denotes an average overall events, as in Sec
II B. The cumulants are by definition the coefficients in t
power-series expansion of this function:

Dp/n~z![(
k,l

z* kzl

k! l !
^^exp@ ipc1 in~f11•••1fk2fk11

2•••2fk1 l !#&&. ~27!

The physical significance of these cumulants is the sam
for the cumulants used in the analysis of integrated flo
They eliminate detector effects and lower-order correlatio
so that only the direct correlation betweenk1 l pions and the
proton, of orderM 2k2 l , and the correlation due to flow re
main. If the proton is not correlated with the pions, for i
stance, Eq.~26! givesDp/n(z)5^eipc&, independent ofz, and
all cumulants withk1 l>1 vanish according to Eq.~27!. In
the more general case when there are correlations, expan
Eq. ~26! to orderz and identifying with Eq.~27!, one obtains

^^ei (pc2nf1)&&[^ei (pc2nf1)&2^eipc&^e2 inf1&. ~28!

This cumulant is analogous to Eq.~2!, and can be interprete
in the same way.

If the detectors used to measure protons and pions
perfect, simplifications occur: first, the cumulants defined
Eq. ~27! are real. To show this, we use the property that if
detector is perfect, the probability that an event occurs
unchanged when one reverses the sign of all azimu
angles~i.e., c→2c and f j→2f j ), therefore,Dp/n(z) is
unchanged under this transformation. Now, the transfor
tion f j→2f j amounts to changingz into z* in Gn(z), ac-
cording to Eq.~5!. Thus, Eq.~26! can also be written as
Dp/n(z)5^e2 ipcGn(z* )&/^Gn(z* )&. Comparing with the
original definition, Eq.~26!, z has been changed toz* andc
to 2c. Now, changingc to 2c in Eq. ~26! amounts to
taking the complex conjugate ofDp/n(z), sinceGn(z) is real.
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One finally obtainsDp/n(z)5Dp/n* (z* ), from which one eas-
ily deduces that the coefficients in the expansion~27! are
real. They are in general complex with a realistic detec
but only the real part is relevant.

Furthermore, most cumulants vanish if the detector is p
fect. In order to see this property, we shift all angles by
same quantitya, which does not change the probability o
the event. The angles of the pions are changed tof j2a,
which amounts to changingz into zeina in Gn(z), as ex-
plained in Sec. II B. Similarly, the angle of the protonc is
changed to c→c2a, so that eipcGn(z) becomes
eipce2 ipaGn(zeina). Averaging overa gives 0 unlessp is a
multiple of n, which is the case we are interested in. Writin
p5mn, the only terms that remain in the power series e
pansion of̂ eipcGn(z)& are the terms inz* kzk1m. To obtain
the generating function of cumulantsDp/n(z), one must di-
vide by ^Gn(z)&. Since this quantity depends only onuzu, as
explained in Sec. II B, the only nonvanishing cumulants
Eq. ~27! are those withl 5k1m. Other cumulants are physi
cally irrelevant.

Finally, the relevant quantities are

dmn/n$2k1m11%[Re@^^exp@ in~mc1f11 . . . 1fk

2fk112 . . . 2f2k1m!#&&#, ~29!

where Re denotes the real part, and the notation$2k1m
11% means that the cumulant involves correlations betw
2k1m11 particles~one proton and 2k1m pions!.

When there is no flow,dmn/n$2k1m11% is of order
M 22k2m. Flow gives a contribution to this cumulant, propo
tional tovp8vn

2k1m , which is calculated in Sec. III C. If this is
the dominant contribution, one obtains an estimate of
differential flow vp8 from the cumulantdp/n$2k1m11%, us-
ing a previously determined value of the integrated flowvn .
This estimate will be denoted byvp/n8 $2k1m11%.

Analytical expressions of higher-order cumulants, d
duced from Eq.~27!, are long. As in the case of integrate
flow, the simplest way to extract them consists in tabulat
the generating functionDmn/n(z), and then computing nu
merically the coefficients of its power-series expansio
through interpolation formulas that are given in Append
B2.

B. Autocorrelations

When studying the azimuthal correlations between
‘‘proton’’ and the ‘‘pions,’’ the ‘‘proton’’ must not be one of
the ‘‘pions,’’ otherwise trivial autocorrelations would appea
This problem is well known in the standard flow analys
@17#: in order to avoid it, one excludes the particle und
study ~the ‘‘proton’’! from the definition of the flow vector
used to estimate the reaction plane, which usually invol
all the other particles~the ‘‘pions’’!.

Here, the proton is one of the pions, one simply remo
its contribution by dividing Gn(z) by 11(z* einc

1ze2 inc)/M in the numerator of Eq.~26!. The generaliza-
tion of this procedure to nonunit weights is straightforwar
1-7
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C. Contribution of flow to the cumulants

Let us now calculate the contribution of flow to the c
mulantsdmn/n$2k1m11%. As in Sec. II C, we neglect non
flow correlations and assume a perfect detector for simp
ity. Under these assumptions, we can compute the gener
function of the cumulantsDp/n(z). We first average over al
events with a fixed orientation of the reaction planeFR , and
over the protons in each single event:

^eipcuFR&5vp8e
ipFR. ~30!

Hence, Eq.~26! becomes

Dp/n~z!5

E
0

2p

eipFR^Gn~z!uFR&dFR/2p

^Gn~z!&
vp8 , ~31!

where the denominator is given by Eq.~15!, and^Gn(z)uFR&
by Eq.~13!. The numerator vanishes unlessp is a multiple of
n, i.e.,p5mn with m integer. Integrating overFR , one then
obtains

E
0

2p

eimnFR^Gn~z!uFR&
dFR

2p

5 (
k50

[( M1m)/2]
M !

~M2m22k!!k! ~2k1m!!

3S vn

M D 2k1m

z* kzk1m

.I m~2vnuzu!S z

uzu D
m

, ~32!

where, in the last identity, we have assumed thatM is large,
so thatM !/( M2m22k)! .M2k1m and we may extend the
sum overk to infinity. Equation~31! gives

Dmn/n~z!5
I m~2uzuvn!

I 0~2uzuvn! S z

uzu D
m

vmn8 . ~33!

This equation can be expanded in power series ofz andz* .
The coefficients of the power-series expansion are rea
expected from the discussion in Sec. III A. Comparing w
Eq. ~27!, cumulants withlÞk1m vanish, which was also
expected; cumulants withl 5k1m, which are thedmn/n$2k
1m11% introduced in Eq.~29!, are proportional tovmn8 . We
thus obtain estimates of the differential flowvmn8 , which we
denote byvmn/n8 $2k1m11%, from the measured cumulant
For m51 ~the proton is correlated with pions in the sam
flow harmonic! these estimates are given by

vn/n8 $2%[dn/n$2%/vn , ~34a!

vn/n8 $4%[2dn/n$4%/vn
3 , ~34b!

while for m52 ~useful when measuring differential ellipti
flow v28 with respect to the integrated directed flowv1)
05490
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ing
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v2n/n8 $3%[d2n/n$3%/vn
2 , ~35a!

v2n/n8 $5%[2d2n/n$5%/~2vn
4!. ~35b!

As in the case of integrated flow, a nonperfect accepta
may induce interference between the various harmonicsvn8 ,
v2n8 , etc., modifying Eqs.~34! and ~35!. The corresponding
relations between the cumulants and the flow are derive
Appendix C2. We have taken into account the possibility t
integrated and differential flows may be measured using
tectors with different azimuthal coverages, which is often
case in practice~see, for instance,@21#!. In particular, if the
detector used for integrated flow is perfect, we show that
correction is required forvn8 , whatever the detector used fo
differential flow may be, which is intuitively obvious: th
only difference when using a smaller detector for the rec
struction of differential flow is then a loss in ‘‘proton’’ mul
tiplicity, resulting in higher statistical errors, which we no
discuss.

D. Errors

As in Sec. II D, we now evaluate the contributions
nonflow correlations and statistical fluctuations to the cum
lants. This will allow us to determine the optimal cumula
order to be used, which minimizes the total uncertainty
vp8 .

As discussed in Sec. III A, nonflow correlations give
unknown contribution of orderM 22k2m to the cumulant
dp/n$2k1m11%, which must be compared with the contr
bution of flow, proportional tovmn8 $2k1m11%vn

2k1m as
shown in Sec. III C. The systematic error invmn/n8 thus reads

vmn/n8 $2k1m11%2vmn/n8 5O„~Mvn!22k2m
…. ~36!

According to Eq.~20!, this systematic error becomes small
and smaller ask increases: the same behavior was obser
for the systematic error on the integrated flow in Sec. II D

The order of magnitude of statistical errors can be e
mated in the same way as for integrated flow. The cumu
dp/n$2k1m11% involves correlations of the proton with
2k1m pions belonging to the same event. There are roug
M2k1m ways ~if M is large enough! to choose 2k1m pions
amongM. Denoting byN8 the total number of protons in
volved in the analysis, there is a total ofM2k1mN8 subsets of
particles involved in evaluating the cumulants. The result
statistical error is therefore

vmn/n8 $2k1m11%2vmn/n8 5OS 1

AM2k1mN8
D 1

vn
2k1m

.

~37!

As was the case for integrated flow, the statistical error u
ally increases with the order of the cumulant, while the s
tematic error decreases. Therefore, the cumulant order
gives the best compromise is the one for which both sta
tical and systematic errors are of the same order of ma
tude. Equating the right-hand sides of Eqs.~36! and~37!, one
obtains the optimal cumulant order@45#,
1-8
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~2k1m11!opt.11
lnN8

lnM
. ~38!

Statistical errors are evaluated in detail in Appendix D
We show that the simple estimate~37! is correct only ifx
[vnAM!1. In this limit, different estimatesvmn/n8 $2k1m
11% and vmn/n8 $2l 1m11% with kÞ l are uncorrelated
Whenx@1, the correlation becomes strong and the stand
error is approximately

d~vmn/n8 $2k1m11%!stat5
1

A2N8
, ~39!

independent of the order 2k1m11, and much larger than
the estimate~37!.

IV. COMPARISON WITH OTHER METHODS

The method proposed in this paper is closely related
our first cumulant-based method@45#, since it is aimed at
correcting some of the latter’s limitations. This is discuss
in Sec. IV A. Then, in Sec. IV B, we compare our meth
with the two-particle correlation technique@28# and with the
subevent method@17,18#.

A. Comparison with our previous method

The cumulant expansion proposed in Ref.@45# was based
on the flow vector rather than on particles themselves.
flow vector is defined for each event as@17,18#

Qn[
1

AM
(
j 51

M

einf j . ~40!

A generating function was then defined as

G0~z![^ezQn* 1z* Qn&. ~41!

The expansion of this generating function generates all
moments of the distribution ofQ, that is,^QkQ* l&. One eas-
ily shows thatG0(z) is closely related to the generating fun
tion used in the present paper. Using the identity

11
z* einf j1ze2 inf j

M
.expS z* einf j1ze2 inf j

M D , ~42!

valid for largeM, we may rewrite the generating function~5!
as

Gn~z!.expS z*

M (
j 51

M

einf j1
z

M (
j 51

M

e2 inf j D
5expS z*

AM
Qn1

z

AM
Qn* D . ~43!

Thus the average over eventŝGn(z)& coincides with
G0(z/AM ). This shows that both methods are equivalent
the large-M limit, up to a rescaling of the variablez.
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The difference between the two approaches can be ea
understood by expanding the two generating functions
powers ofz andz* . To second order, for instance, Eqs.~40!
and ~41! give

G0~z!5•••1
zz*

M K (
j ,k

ein(f j 2fk)L
1

z2

2M K (
j ,k

e2 in(f j 1fk)L 1
z* 2

2M K (
j ,k

ein(f j 1fk)L
1••• ~44!

while our new generating function gives@see Eq.~6!#

^Gn~z!&5•••1
zz*

M2 K (
j Þk

ein(f j 2fk)L
1

z2

2M2 K (
j Þk

e2 in(f j 1fk)L
1

z* 2

2M2 K (j Þk
ein(f j 1fk)L 1•••. ~45!

The essential difference is the restrictionj Þk in the sums:
our new method is free from the autocorrelations correspo
ing to the terms withj 5k in Eq. ~44!. This remains true to
higher orders inz andz* .

Autocorrelations have two effects: in the first term of E
~44!, they give a constant, trivial contribution that must th
be removed. This fixes the choice of the weight 1/AM in the
definition of the flow vector, Eq.~40!. With another weight,
the contribution of autocorrelations would depend onM, and
it would not be easy to subtract them whenM is allowed to
fluctuate. With the new generating function, we are free
choose another weight, and we show in Appendix A that
weight 1/M @Eq. ~5!# gives more accurate results whenM is
allowed to fluctuate.

In the second and third terms of Eq.~44!, autocorrelations
create terms ine62inf j which interfere with higher harmon
ics. This was the main limitation of the method exposed
Ref. @45#. Eliminating all autocorrelations represents a ma
improvement. In particular, our method should ena
directed flow to be measured at RHIC, if any.

Finally, let us comment on our definition of the cumulan
through the generating functionCn(z) in Eq. ~7!. This defi-
nition ensures that cumulants of order 2 and higher vanis
particles are uncorrelated@see the discussion following Eq
~8!#. In the limit when M is large, one recoversCn(z)
5 ln^Gn(z)&, in agreement with the standard definition of c
mulants in probability theory@60#, and with the definition we
adopted in Ref.@45#.

B. Comparison with standard methods

Reference@28# proposed analysis of flow using two
particle azimuthal correlations. More specifically, one defin
by Pcorr(Df) @resp.Puncor(Df)# the distribution of the rela-
tive angleDf[f12f2, wheref1 andf2 are any two par-
1-9
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ticles belonging to the same event~resp. belonging to two
different events!. One then constructs the ratio

C~Df![
Pcorr~Df!

Puncorr~Df!
. ~46!

This so-called ‘‘mixed event’’ technique enables the extr
tion of the physical correlations between the particles, eli
nating the effects of an uneven detector acceptance. Neg
ing nonflow correlations, one has in general

C~Df!5 (
n52`

1`

vn
2einDf, ~47!

so that the Fourier expansion of the measured correla
functionC(Df) simply yields the integrated flowvn . Simi-
larly, if one replacesf1 with the azimuthal anglec of a
particle in a narrow phase space window,vn

2 in Eq. ~47! is
replaced withvn8vn , wherevn8 is the differential flow of the
particle of interest.

The values ofvn andvn8 obtained with this method coin
cide with the values we obtain from the cumulant of order
which are denoted byvn$2% andvn8$2% in this paper; while
we do not need mixed events, we must apply correction
tors to our reconstructedvn$2% and vn8$2% if the detector
does not have full azimuthal coverage, as explained at
end of Secs. II C and III C. With the mixed-event techniqu
this correction is not required@31#.

The essential limitation of the two-particle correlatio
technique is that it is not possible to separate flow correla
from nonflow correlation: therefore the results may
strongly biased by nonflow correlations, which are elim
nated in our method by the construction of higher order
mulants.

The same limitation applies to the much more wide
used subevent method@17#. This method involves two steps
in each event, one constructs the flow vector~40! to estimate
the orientation of the reaction planeFR , and a study of the
azimuthal correlation between the flow vectors of two ra
domly chosen ‘‘subevents’’ yields the accuracy of this es
mate ~the so-called ‘‘reaction plane resolution’’!. This first
step amounts to measuring the integrated flow. Then, in o
to measure differential flow, one studies the azimuthal co
lation between a single particle and the flow vector. Since
latter involves a summation over many particles, the co
lation between a single particle and the flow vector is mu
stronger than the correlation between two single partic
which is probably the reason why this method is used
often. However, the relative weights of nonflow and flo
correlations are the same@45# as in the much simpler two
particle correlation technique discussed above, so that
suffer from the same limitations.

Flow and nonflow correlations could in fact be disti
guished in the subevent method, through a more deta
study of the azimuthal correlation between subevents.
deed, flow and nonflow correlations yield a different shape
the distribution of the relative azimuthal angleDF between
subevents, as shown in Ref.@61#. If correlations are only due
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to flow, then the distribution ofDF is universal, and depend
only on the resolutionx[vnAM that characterizes the reac
tion plane resolution@19#. A comparison of the calculated
distribution with experimental data was recently done at
ergies of 250 MeV per nucleon@1#. The agreement is perfec
which shows that the observed correlations are dominate
flow at these energies. To our knowledge, no such comp
son has been carried out so far at ultrarelativistic energie

V. RESULTS OF MONTE CARLO SIMULATIONS

We have performed various Monte Carlo simulations
check the validity of the procedures explained in this pap
In each simulation,Nevts events are simulated; in a give
event, the reaction planeFR is chosen randomly, then
‘‘pions’’ and ‘‘protons’’ are generated according to the distr
butions

dN

df
}112v1 cos~f2FR!12v2 cos@2~f2FR!# ~48!

and

dN8

dc
}112v18 cos~c2FR!12v28 cos@2~c2FR!#,

~49!

respectively. We then reconstruct the integrated~Sec. V A!
and differential~Sec. V B! flows following the procedures
presented in Secs. II and III.

A. Integrated flow

In the first set of simulations, we generatedNevts5105

events withM5200 pions emitted with an integrated ellipt
flow v256%, which we then tried to reconstruct. No int
grated directed flow was simulated. We first assumed a
fect detector. The optimal cumulant order, defined by E
~22!, is 2kopt54.2. The estimatev2$4% derived from the
fourth-order cumulant is thus likely to give the best comp
mise between systematic and statistical errors, but we
calculated the estimatesv2$2% andv2$6%.

The results are presented in Table I. The error bars
statistical only. They are asymmetric forv2$6%: this reflects
the fact that the statistical fluctuations ofvn$2k% are not
Gaussian when the error is large, as explained in Appen
D2. When working with a fixed multiplicityM5200, the
reconstructed values coincide with the theoretical va
within expected statistical errors. Note that the statistical
ror onv2$6% is only slightly larger than that onv2$4% in this
case. When the multiplicityM is randomly chosen betwee
150 and 250, the reconstructed flow deviates from the th
retical value by more than two standard deviations, but
accuracy is still good, and moreover, the statistical err
were calculated assuming a fixed detected multiplicity, wh
the real errors are probably larger.

In order to check the ability of our method to elimina
two-particle nonflow correlations, the latter were simulat
by emitting particles in pairs, where both particles in a p
have the same azimuthal angle. 100 pairs were emitte
1-10
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TABLE I. Reconstruction of integrated elliptic flow.Nevts5105 events withv150 andv256% were
generated in each simulation. The three columns give the values ofv2, in %, reconstructed using cumulan
to order 2, 4, and 6, respectively.

v2$2% v2$4% v2$6%

Full acceptance,M5200 6.0160.02 6.0360.04 6.0860.05
Full acceptance, 150,M,250 6.0160.02 6.1160.04 6.1360.05
Nonflow correlations,M5200 9.2160.02 6.1660.04 6.1960.05
‘‘Bow tie’’ acceptance,M5100 5.9960.04 6.0960.12 6.3420.22

10.19

‘‘Bow tie’’ acceptance, 75,M,125 5.8560.04 5.4060.12 5.7420.22
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each event, resulting in a multiplicityM5200. The recon-
structed value with the cumulant of order 2 , i.e., witho
removing two-particle nonflow correlations, is 50% to
large; the standard methods would give similar results.
the other hand, the values obtained using higher-order cu
lants are much closer to the theoretical value; they are
yond statistical error bars, but this is not surprising sin
error bars were calculated assumingM5200 independen
particles, while the effective multiplicity here is rather 10
which results in larger fluctuations.

In summary, the results obtained so far show thatv2$4% is
to be preferred here: the statistical error onv2$6% is ~slightly!
larger, while nonflow correlations may give a large, unco
trolled, contribution tov2$2%. To test the validity of our ac-
ceptance corrections, we then did simulations with
‘‘bow-tie’’ detector schematically represented in Fig.
which mimics the azimuthal acceptance of the PHENIX d
tector @31#: particles are detected only within two quadran
of 90° each, with 100% efficiency. Since only half the pa
ticles are detected with this detector, the value ofM chosen
in this simulation was half the value chosen above fo
perfect detector. The optimal cumulant order is now 2kopt
54.5, so that the fourth-order cumulant is still to be p
ferred. Since the azimuthal coverage is only partial, Eqs.~17!
relating the cumulant to the flow are no longer valid. In t
case of elliptic flow, they are replaced by Eqs.~C7!. These
formulas involve the Fourier coefficientsap of the accep-
tance function, defined by Eq.~18!. With the acceptance de
picted in Fig. 1, a simple calculation givesa252/p anda1
5a35a450. Inserting these values into Eqs.~C7!, one finds

c2$2%.0.518v2$2%2,

FIG. 1. Schematic picture of the PHENIX detector at RHIC. T
shaded area indicates the azimuthal coverage of the detector,
the darker area at the right of the figure corresponds to a s
time-of-flight detector with an extension of 45°, which can be us
to measure the differential flow of identified particles.
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c2$4%.20.384v2$4%4. ~50!

An interesting feature of this bow-tie acceptance is that th
is no interference betweenv1 and v2, because allap with
odd p vanish. However, this is not the case in general~see
Appendix C!. The results are given in Table I. Note that th
estimate of statistical errors was done assuming a full acc
tance, so they may be underestimated here. When the m
plicity M is fixed, the reconstructed values agree with t
theoretical values within eror bars. If the acceptance corr
tion had not been applied, the reconstructed values would
below 5%.

If M is allowed to fluctuate, the discrepancy between
constructed and theoretical values is much larger than st
tical errors, and also much larger than in the case of a
acceptance. As explained in Appendix A, a fluctuationdM in
multiplicity induces some errors, which scale asdM2 and are
comparatively larger when the acceptance is not good
order to avoid this effect, the analysis can be done by sel
ing randomly a subset of the detected particles, with fix
multiplicity, as explained at the end of Sec. II B.

We then performed a second set of simulations, with b
directed and elliptic flow, in order to test possible interfe
ences between the two. Such uncontrolled interferences w
the main limitation of our previous cumulant method@45#,
but are avoided here, as explained in Sec. IV A. Interfere
of a different kind may in fact still occur when the detect
has partial azimuthal coverage, as explained in Appendix
but they are under control. Events were generated wit
small directed flowv152%, and with an elliptic flowv2
50 or v256%. The goal was to reconstructv1. Since 2% is
a very small value, the number of events generated w
larger than that in the previous set of simulations. With t
values ofNevtsandM given in Table II, the optimal cumulan
order is still 4: all the results presented in Table II are rec
structed from the fourth-order cumulant. In the case of

ile
all
d

TABLE II. Reconstruction of a theoretical directed flowv1

52%. Nevts553105 events were generated in each simulatio
with M5200 detected particles in each event. The table gives
values ofv1$4% in %.

v250 v256%

Full acceptance,M5200 2.0120.32
10.21 2.1920.32

10.21

‘‘Bow-tie’’ acceptance,M5200 1.8720.32
10.21 1.8820.32

10.21
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TABLE III. Reconstruction of differential elliptic flow with respect to integrated elliptic flow, i.e.,v2/28 . In
each simulation,N8553105 protons were generated withv2856% andv1850. The integrated flow was also
v256% andv150. The last two columns give the values ofv28 ~in %! reconstructed from the cumulants t
order 2 and 4, respectively.

Pions Protons v2/28 $2% v2/28 $4%

Full acceptance,M5200 Full acceptance 5.9660.15 6.1060.44
‘‘Bow-tie’’ acceptance,M5100 ‘‘Bow-tie’’ acceptance 6.0760.20 5.8360.99
‘‘Bow tie’’ acceptance,M5100 45° acceptance 6.0260.20 5.7160.99
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bow-tie acceptance, the relation betweenv1$4% and the cu-
mulant, Eq.~17b!, must be replaced by Eq.~C6b!, which
gives

c1$4%.22.785v1$4%4. ~51!

The reconstructed value ofv1 is always compatible with the
theoretical valuev152% within the statistical error, eve
with the bow-tie acceptance. This is a major improvement
our previous method@45#, where the reconstruction ofv1
would have been impossible ifv256%, even in the case o
a perfect detector.

B. Differential flow

We then performed various simulations to test our rec
struction of the differential flow. In the first set of simula
tions ~see Table III!, only elliptic flow was generated. Even
were generated withv285v256%, and we tried to recon
structv28 . As explained in Sec. III, the first step in the anal
sis is the reconstruction ofv2. Since no integrated directe
flow v1 is present,v28 can then be reconstructed only wi
respect tov2: this is denoted byv2/28 in Sec. III. One can
reconstruct it from the lowest order cumulant. This yields
estimatev2/28 $2%, equivalent to the standard flow analys
One can also reconstruct the higher order cumulantv2/28 $4%,
which eliminates nonflow correlations between the pro
and the pions.

In the first simulation, we assumed that the detector w
perfect, both for integrated and for differential flow. With th
values of the parameters given in Table III, the optimal c
mulant order, defined by Eq.~38!, is (2k1m11)opt53.5,
i.e., v2/2$4% is to be preferred. Nevertheless, we also inclu
the lowest-order estimatesv2/2$2%. Since no nonflow corre-
lations are generated between the proton and the pions,
estimate should be good. Indeed, both estimates are foun
be in very good agreement with the theoretical value.

We then turned to the case when the detectors no lon
have a perfect acceptance. In this case, corrections mu
applied, as explained in Appendix C2. For the integra
flow, we used the ‘‘bow-tie’’ detector of Fig. 1. As in Se
V A, the multiplicity of each event with this detector isM
5100, instead ofM5200 with the full acceptance. Thi
modification does not affect the optimal cumulant ord
which is still 4. For differential flow, two different detector
were considered. First, the same bow-tie acceptance a
pions, i.e., the relevant Fourier coefficients area2852/p and
a185a385a4850. In this case, the relations between the c
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mulants and flow, Eqs.~C15!, are

d2/2$2%.0.595v2v2/28 $2%,

d2/2$4%.20.406v2
3v2/28 $4%. ~52!

Second, we assumed the protons were detected with a s
45° detector~see Fig. 1!. The Fourier coefficients of its ac
ceptance function A8(c) are a0851, ap>18
58 sin(pp/8)/(pp), which yields the relations

d2/2$2%.0.337v2v2/28 $2%,

d2/2$4%.20.181v2
3v2/28 $4%. ~53!

Note that the last correction is more than a factor of 5, co
pared to a full acceptance. In all cases, the results~Table III!
are in excellent agreement with the theoretical value. T
shows that with our method, it is possible to measure diff
ential flow with any detector provided the relevant acce
tance corrections are performed.

We then did a second set of simulations. The only diff
ence with the first set is that directed flow is also genera
with the same magnitude as elliptic flow, i.e.,v185v156%.
In this case, it is also possible to measure differential ellip
flow with respect to integrated directed flow,v2/18 . We recon-
structed only the lowest-order estimatev2/18 $3%, which is also
given by the standard flow analysis. Note that it is alrea
insensitive to two-particle nonflow correlations. In the ca
when the bow-tie acceptance applies to both integrated
differential flow, Eq.~C14! does not give any correction, s
that Eq.~35a! still holds. When protons are measured with
small 45° detector, on the other hand, Eq.~C14! gives

d2/1$3%.1.258v1
2v2/18 $3%. ~54!

Results are given in Table IV. With a full acceptance, t
reconstruction of bothv2/18 and v2/28 is good, within the ex-
pected error bars. With a partial acceptance, however,
crepancies are much larger. In particular, the value ofv2/28
with a 45° acceptance differs by four standard deviatio
from the theoretical value.

VI. CONCLUSIONS

We have presented a new, general method for analyz
the flow. This method can be used by all heavy-ion expe
ments that implement the standard analysis of Danielew
1-12
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TABLE IV. Same as Table III, except that a directed flowv15v1856% was generated in addition to th
elliptic flow. The third column gives the differential elliptic flow recontructed with respect to integr
directed flow, to lowest order.

Pions Protons v2/18 $3% v2/28 $2% v2/28 $4%

Full acceptance,M5200 full acceptance 6.4760.32 5.8160.15 6.0360.44
‘‘Bow-tie’’ acceptance,M5100 ‘‘bow-tie’’ acceptance 5.0860.54 5.8060.20 5.5160.99
‘‘Bow tie’’ acceptance,M5100 45° acceptance 5.2060.54 6.8160.20 7.9560.99
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and Odyniec@17#, since it uses the same input, namely t
azimuthal angles of outgoing particles. As in the stand
analysis, one proceeds in two steps. One first reconstruct
average value of the flow over phase space, with an ap
priate weight: this ‘‘integrated flow’’vn is related to the re-
action plane resolution in the standard analysis. One m
then perform detailed analyses in narrower phase-space
dows, i.e., measure ‘‘differential flow’’vn8 . The strong points
of our method are the following:

It systematically eliminates azimuthal correlations that
not due to flow.

One obtains several different estimates ofvn and vn8 ;
comparison between these estimates provides a useful
sistency check.

The detectors need not have full azimuthal coverage.
Let us comment on these three points in more detail.

Nonflow correlations are eliminated by means of a cum
lant expansion of multiparticle azimuthal correlations. Th
cumulant expansion applies to both integrated and differ
tial flow. In the case of integrated flow, one constructs
series of cumulantscn$2k%, wherek is an arbitrary positive
integer.cn$2k% involves correlations between 2k particles,
but is insensitive to correlations involving less than 2k par-
ticles. Now, flow is by definition a collective phenomeno
which induces correlations between all the produced p
ticles: ask increases, its relative contribution tocn$2k% also
increases.

Using the cumulantcn$2k%, one obtains an estimate o
vn , denoted byvn$2k% in this paper. The lowest-ordervn$2%
corresponds to the standard flow analysis: it coincides w
vn if all correlations are due to flow. The nice feature of o
method is that higher-order cumulants provide us with oth
independent estimates ofvn , which can be used as a consi
tency check. The reader might believe that constructing
mulants of six-particle correlations requires a huge statist
and is practically impossible. This is not true. Statistical
rors on higher-order estimatesvn$2k% are discussed thor
oughly in Appendix D. They strongly depend on the stren
of the flow itself, and more precisely on the parameterx
[vnAM , which characterizes the resolution of the react
plane reconstructionDFR in the standard analysis. Ifx51,
corresponding to a resolutionDFR545°, which is achieved
in many experiments, the statistical error on bothvn$4% and
vn$6% is only 60% higher than the error onvn$2%, as can be
seen in Fig. 2.

The same discussion can be repeated for differential fl
In the case of differential elliptic flowv28 , however, the stan
dard analysis also provides us with two different estimate
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this quantity, depending on whether the reaction plane
measured using directed (v2/18 ) or elliptic (v2/28 ) flow. The
first of these two estimates,v2/18 , which involves correlations
between three particles, is insensitive to two-particle nonfl
correlations, even in the standard analysis. In this paper,
obtain several estimates for bothv2/18 andv2/28 , which can be
used as further consistency checks.

Finally, we have also included a detailed discussion
acceptance corrections, which allow us to work even if
detector has only partial azimuthal coverage. One may ar
that the corresponding formulas, given in Appendix C, a
very heavy. However, these formulas are required only if
acceptance is far from isotropic: corrections correspondin
weak inhomogeneities of the acceptance are automatic
taken care of by the cumulant expansion itself. Furthermo
the correction factors need only be calculated once fo
given detector, and it is a simple calculation. When they
applied, accurate results can be obtained even with a v
poor acceptance, as illustrated by the simulations perform
in Sec. V. Although several methods have been propose
correct for detector inefficiencies in the standard analy
@18#, we do not know of any systematic study of their limit
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APPENDIX A: CUMULANTS OF MULTIPARTICLE
AZIMUTHAL CORRELATIONS

In this appendix, we justify the definition of the cumulan
from the generating function~7! by discussing a few ex-
amples.

We begin with the second-order cumulantcn$2%
5^^ein(f12f2)&&. Inserting Eq.~6! in expression~7! and ex-
panding to orderzz* , we obtain from Eq.~8!,

^^ein(f12f2)&&5
M21

M
~^ein(f12f2)&2^einf1&^e2 inf2&!.

~A1!
1-13
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If particles are uncorrelated, i.e., ^ein(f12f2)&
5^einf1&^e2 inf2&, the cumulant vanishes, as it should. In t
limit when M@1, one recovers definition~2!.

The standard definition of the cumulants isCn(z)
5 ln^Gn(z)&, rather than Eq.~7! @60#. However, with this defi-
nition we would obtain, instead of Eq.~A1!,

^^ein(f12f2)&&5
M21

M
^ein(f12f2)&2^einf1&^e2 inf2&

5
M21

M
~^ein(f12f2)&2^einf1&^e2 inf2&!

1
1

M
^einf1&^e2 inf2&. ~A2!

If particles are uncorrelated, the last term in the equat
remains if the acceptance is not perfect. This may resu
large errors when the flow is small.

In Sec. II B, we also considered the possibility that t
multiplicity M is not strictly the same for all events. If
fluctuates around an average value^M &, then the generating
function ~6! must also be averaged overM, andM must be
replaced bŷ M & in the definition of the cumulants, Eq.~7!.
Equation~A1! is then replaced by

^^ein(f12f2)&&5 K M21

M L ^ein(f12f2)&2S 12
1

^M & D ^einf1&

3^e2 inf2&. ~A3!

The magnitude of the fluctuations ofM can be characterize
by their standard deviationdM2[^M2&2^M &2. If dM
!^M &, then ^1/M &.1/̂ M &1dM2/^M &3, and Eq.~A3! be-
comes

^^ein(f12f2)&&5 K M21

M L ~^ein(f12f2)&2^einf1&^e2 inf2&!

2
dM2

^M &3 ^einf1&^e2 inf2&, ~A4!

to be compared with Eq.~A1!. If dM!M and M@1, the
correction should be negligible.

This is why the factor 1/M associated with each particl
in the generating function~5! is important. If this factor had
not been included, the coefficient in front ofzz* in Cn(z)
would be

^M ~M21!&^ein(f12f2)&2^M &~^M &21!^einf1&^e2 inf2&

5^M ~M21!&~^ein(f12f2)&2^einf1&^e2 inf2&!

1dM2^einf1&^e2 inf2&. ~A5!

In this equation, the second term in the rhs appears wi
coefficient of orderdM2/^M &2 with respect to the coefficien
of the first term. This should be compared with Eq.~A4!,
where the coefficient of the second term is of magnitu
dM2/^M &3, i.e., much smaller. Thus the weight 1/M in Eq.
~5! minimizes the effects of a fluctuating multiplicity.
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We now turn to the expression of the fourth-order cum
lant. For simplicity, we restrict the discussion to a perfe
detector and a fixed multiplicityM. Then the generating
function ^Gn(z)& is

^Gn~z!&511
M21

M
uzu2^ein(f12f2)&

1
~M21!~M22!~M23!

4M3
uzu4^exp@ in~f11f2

2f32f4!#&1 . . . . ~A6!

Inserting this expression in Eq.~7! and expanding to orde
uzu4, one obtains

1

4
^^exp@ in~f11f22f32f4!#&&

5
M21

4M F ~M22!~M23!

M2
^exp@ in~f11f22f32f4!#&

22
~M21!2

M2
^ein(f12f2)&2G , ~A7!

which gives Eq.~4! in the limit of largeM.
More generally, the cumulantŝ ^exp@in(f11•••1fk

2fk112•••2fk1l)#&& derived from the generating equatio
~7! coincide with the quantities of physical interest, that
only the (k1 l )-particle direct correlations when there is n
flow, up to subleading terms of relative magnitudeO(1/M ).

APPENDIX B: INTERPOLATION FORMULAS

In this Appendix, we give interpolation methods to com
pute numerically the cumulants from their generati
functions. Generally, one wishes to reconstructki cumu-
lants for integrated flow, i.e.,cn$2k% for k51,•••,ki , andkd
cumulants for differential flow, i.e.,dmn/n$2k1m11% for
k50,•••,kd21. Typical values areki53, m51,2, andkd
52. One thus obtains three independent estimates of i
grated flowvn , and two estimates of eachvmn/n8 .

The cumulants are defined as coefficients in the pow
series expansions of the generating functionsCn(z) @Eq. ~8!#
and Dmn/n(z) @Eq. ~27!#. To extract the cumulants numer
cally, one first computes the generating functions at
pointszp,q5xp,q1 iyp,q with

xp,q[r 0Ap cosS 2qp

qmax
D ,

yp,q[r 0Ap sinS 2qp

qmax
D , ~B1!

for p51,•••,kmax and q50,•••,qmax21. These equations
define a set ofkmax3qmax points in the complex plane, wher
kmax and qmax must satisfykmax>ki ,kd and qmax.2ki ,2(kd
1m21). With the values ofki , m, andkd given above, one
can choose, for instance,kmax53 andqmax57 or 8.
1-14
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The numberr 0 in Eqs.~B1! is in principle a small num-
ber, since we are interested in the behavior of the genera
functions near the origin. Ifr 0 is too small, however, large
numerical errors occur. In practice, the numerical simulati
presented in Sec. V were done with double precision nu
bers~16 digits!, and with the valuer 051.5. A much smaller
value was given in Ref.@45#. This is due to a rescaling of th
variablez by a factor ofAM , as discussed in Sec. IV A@see
Eq. ~43!#. In any case, the interpolation should be done w
two different values ofr 0 in order to check the stability o
the results.

1. Integrated flow

We denote byCp,q the values of the generating functio
C(z) evaluated at the points~B1!:

Cp,q[Cn~zp,q!. ~B2!

The cumulantscn$2k% correspond to the terms withk5 l in
the power-series expansion~8!. In order to eliminate terms
with kÞ l , one averages over the phase ofz:

Cp[
1

qmax
(
q50

qmax21

Cp,q . ~B3!

Then, theCp , with p51, . . . ,ki , are related to the cumulant
cn$2k% with k51, . . . ,ki by the following linear system ofki
equations:

Cp5 (
k51

ki ~r 0Ap!2k

~k! !2
cn$2k%, 1<p<ki . ~B4!

The solution of this system forki53 reads

cn$2%5
1

r 0
2~3C12 3

2 C21 1
3 C3!,

cn$4%5
2

r 0
4~25C114C22C3!,

cn$6%5
6

r 0
6~3C123C21C3!. ~B5!

Solving Eqs.~B4! with a larger value ofki provides more
accurate values of the first three cumulants, as well
higher-order cumulantscn$2k%.

2. Differential flow

The generating functionDmn/n(z) is complex. From defi-
nition ~26!, its real and imaginary parts at the pointszp,q are

Xp,q[Re@Dmn/n~zp,q!#5
^cos~mnc!Gn~zp,q!&

^Gn~zp,q!&

Yp,q[Im@Dmn/n~zp,q!#5
^sin~mnc!Gn~zp,q!&

^Gn~zp,q!&
. ~B6!
05490
ng

s
-

s

The cumulantsdmn/n$2k1m11%, defined in Eq.~29!, are
the real parts of the terms proportional toz* kzk1m in the
power-series expansion~27!. In order to isolate these terms
one multipliesDmn/n(z) by z* m, takes the real part, and av
erages over angles:

Dp[
~r 0Ap!m

qmax
(
q50

qmax21 FcosS m
2qp

qmax
DXp,q

1sinS m
2qp

qmax
DYp,qG . ~B7!

The values ofDp for p51, . . . ,kd are related to the cumu
lantsdmn/n$2k1m11% with k50, . . . ,kd21 by the follow-
ing linear system ofkd equations:

Dp5 (
k50

kd ~r 0Ap!2(k1m)

k! ~k1m!!
dmn/n$2k1m11%, 1<p<kd .

~B8!

For kd52 andm51, the solution of this system is

dn/n$2%5
1

r 0
2 ~2D12 1

2 D2!,

dn/n$4%5
1

r 0
4 ~22D11D2!, ~B9!

while for kd52 andm52,

d2n/n$3%5
1

r 0
4 S 4D12

1

2
D2D ,

d2n/n$5%5
1

r 0
6 S 26D11

3

2
D2D . ~B10!

APPENDIX C: ACCEPTANCE CORRECTIONS

We derive here the relations between the cumulants
the flow when the detector has only partial azimuthal cov
age. As explained in Sec. II C, we assume that the clas
events used in the flow analysis~usually corresponding to a
given centrality cut! is selected by means of a detector th
has, at least approximately, full azimuthal coverage, so
we may assume that the probability distribution ofFR is
uniform.

We wish to recall that the first step in our accounting f
acceptance inhomogeneities is the choice of ‘‘nonisotrop
cumulants, as explained in Sec. II B: while the simple cum
lant deduced from Eq.~3! is valid for a perfect detector, a
more general definition is that deduced from Eqs.~7! and~8!.
For ‘‘almost’’ perfect detectors, this first step should b
enough, and the following results oversophisticated.

1. Integrated flow

Let us describe the detector characteristics~acceptance
and efficiency! by a real-valued functionA(f), which is the
probability that a particle emitted at anglef be detected. We
1-15
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choose to normalize this function according to*0
2pA(f)df

52p. The functionA(f) can be expanded into a Fourie
series,

A~f!5 (
p52`

1`

apeipf, ~C1!

where theap coefficients, Eq.~18!, satisfy a2p5ap* , and
a051 due to the normalization choice. For a perfect det
tor, apÞ050.

The distribution of outgoing particles in a given collisio
is

P~f2FR!} (
p52`

1`

vpeip(f2FR), ~C2!

whereFR is the reaction plane azimuth of the collision,v0
51, and thevp5v2p are real valued.

We now evaluate the generating function of azimut
correlations^Gn(z)&, with Gn(z) defined by Eq.~5!, and
compute the cumulants as a function of the flow coefficie
vp and the acceptance coefficientsap .

For a given orientation of the reaction plane, the aver
value ofe2 inf for a particle seen in the detector is

^e2 infuFR&5

E
0

2p

dfe2 infA~f!P~f2FR!

E
0

2p

dfA~f!P~f2FR!

5

(
p52`

1`

ap1nvpeipFR

(
p52`

1`

apvpeipFR

, ~C3!

where n is the harmonic that one wants to measure. T
denominator is the probability that a pion be detected, wh
depends onFR if there is flow.

To obtain the cumulants to leading order in the flow c
efficientsvp with pÞ0, one can linearize this expression
vp with pÞ0:

^e2 infuFR&5an1 (
pÞ0

~ap1n2anap!vpeipFR. ~C4!

In this expression, the term proportional toanap comes from
the denominator of Eq.~C3!. It reflects theFR dependence
of the probability that a pion be detected.

The average value~C4! can then be introduced in th
generating function̂ Gn(z)&. We neglect nonflow correla
tions for simplicity. Then, the angles of the particles are s
tistically independent and we obtain
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^Gn~z!uFR&

5F11
z

M San1(
pÞ0

~ap1n2anap!vpe
ipFRD1c.c.GM

.ezan1c.c.expFz(
pÞ0

~ap1n2anap!vpeipFR1c.c.G . ~C5!

In the second identity, we have assumed thatM is large, so
that (11x/M )M.expx. Equation~C5! can be compared to
Eq. ~13!, to which it reduces when the acceptance is perfe
When it is not the case, the generating function depend
general on harmonicsvp with pÞn.

The generating function must still be averaged overFR ,
as in Eq.~14!. The first term exp(zan1z*an* ) is independent
of FR and factors out. This term does not contribute to t
cumulants of order 2 and higher, since it gives a linear c
tribution to the generating function of the cumulants~7!,
which is ln̂ Gn(z)& in the large-M limit.

In the general case, there is no simple analytic expres
for the average overFR of ^Gn(z)&. To obtain the cumulant
at a given order, one must expand Eq.~C5! to the desired
order, and then integrate overFR . Then Eq.~8! yields the
cumulants.

Keeping only the first harmonicsv1 andv2, which corre-
spond to the termsp561,62 in Eq. ~C4!, one finally ob-
tains forn51 ~i.e., for a measurement of directed flow!

c1$2%5@~12ua1u2!21ua22a1
2u2#v1

21@ ua12a2a1* u2

1ua32a1a2u2#v2
2. ~C6a!

Both harmonics interfere, and one cannot measurev1 andv2
independently. Similarly, the cumulant to order 4 become

c1$4%52@~12ua1u2!414~12ua1u2!2ua22a1
2u2

1ua22a1
2u4#v1

42@ ua12a2a1* u414ua12a2a1* u2

3ua32a1a2u21ua32a1a2u4#v2
4 . ~C6b!

For n52 ~integrated elliptic flow!, the first two cumulants
are

c2$2%5@ ua12a2a1* u21ua32a1a2u2#v1
21@~12ua2u2!2

1ua42a2
2u2#v2

2 . ~C7a!

and

c2$4%52@ ua12a2a1* u414ua12a2a1* u2ua32a1a2u2

1ua32a1a2u4#v1
42@~12ua2u2!414~12ua2u2!2ua4

2a2
2u21ua42a2

2u4#v2
4 . ~C7b!

If the acceptance is perfect, Eqs.~C6! and ~C7! reduce to
Eqs. ~17a! and ~17b!, as they should. In the general cas
Eqs.~C6a! and~C7a! represent a linear system of equation
which can easily be solved to givev1 andv2 ~or more pre-
cisely, v1$2% and v2$2%) as a function of the cumulants
1-16
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Similarly, Eqs. ~C6b! and ~C7b! can be solved to obtain
v1$4% andv2$4% as functions of the cumulants.

We do not include the expressions of the cumulantsc1$6%
and c2$6%. In addition to the expected terms inv1

6 and v2
6,

they involve a term proportional tov1
4v2

2.
Note that in going from Eq.~C3! to Eq. ~C4!, we have

kept only the leading-order terms invn , so that the values o
v1 andv2 obtained by the above method may have syste
atic errors of relative orderv1 and v2: for instance, if the
elliptic flow is v255%, one may find instead 5.25% due
this effect.

Finally, it should be noted that all corrections for acce
tance inhomogeneities, in Eqs.~C6! and ~C7!, involve at
least the squared normuapu2 of the acceptance Fourier coe
ficients. Therefore, we believe that if allap.0 are smaller~in
norm! than 0.1, then the procedure discussed in this sub
tion is superfluous: the relative magnitudes of the cor
sponding acceptance corrections are at most of a few per
much too small to be significant. Moreover, this also app
to differential flow, since as we shall see shortly, in the c
of a perfect detector for integrated flow, there are no acc
tance correction even forvp8 .

2. Differential flow

For the protons whose differential flow is measured,
introduce two functionsA8(c) andP8(c2FR) that play the
same role asA(f) andP(f2FR) for the pions~please note
that A8 and P8 are not the derivatives ofA and P). Their
expansion in Fourier series reads as in Eqs.~C1! and ~C2!,
with ap ~resp.vp) replaced byap8 ~resp.vp8).

In order to calculate the generating function of the cum
lants, Eq.~26!, we need to evaluatêeipcGn(z)&, where the
average is taken over all the detected protons. In compu
this average, one must take into account carefully that
probability p(FR) that an emitted proton be detected d
pends on the orientation of the reaction planeFR :

p~FR!5E
0

2p

A8~c!P8~c2FR!
dc

2p
. ~C8!

With this notation, we may write

^eipcGn~z!&5

E
0

2p

^eipcGn~z!uFR&p~FR!dFR

E
0

2p

p~FR!dFR

. ~C9!

The denominator is equal to 2pa0852p since we normalize
the acceptance function bya0851. In order to evaluate the
numerator, we neglect nonflow correlations. Then, the pro
and the pions are emitted independently for a fixedFR , so
that averages factorize as

^eipcGn~z!uFR&5^eipcuFR&^Gn~z!uFR&. ~C10!
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In this expression,̂ Gn(z)uFR& is given by Eq.~C5! and
^eipcuFR& by an equation similar to Eq.~C3!, with ap ~resp.
vp) replaced byap8 ~resp.vp8). Using Eq.~C8!, we may thus
write

^eipcuFR&p~FR!5E
0

2p

eipcA8~c!P8~c!
dc

2p

5 (
q52`

1`

aq2p8 vq8e
iqFR. ~C11!

Inserting Eqs.~C10! and ~C11! in expression~C9!, the gen-
erating function of the cumulants, Eq.~26!, reads

Dp/n~z!5 (
q52`

1`

aq2p8 vq8

E
0

2p

eiqFR^Gn~z!uFR&dFR

E
0

2p

^Gn~z!uFR&dFR

.

~C12!

Comparing with Eq.~31!, to which this equation reduce
when the acceptance is perfect, one sees that the cumu
involve, in general, all harmonicsvq8 .

Expanding in powers ofz andz* and performing the in-
tegrals overFR , one finally obtains for differential directed
flow

d1/1$2%5Re@12ua1u21~a28!* ~a22a1
2!#v18v11Re@a18~a1*

2a2* a1!1~a38!* ~a32a1a2!#v28v2, ~C13a!

where Re means that one must take the real part: when
acceptance is not perfect, the coefficient is in general co
plex. The higher-order cumulant is given by

d1/1$4%52Re@~12ua1u2!$~12ua1u2!212ua22a1
2u2%

1~a28!* ~a22a1
2!$2~12ua1u2!21ua22a1

2u2%#v18v1
3

2Re@a18~a1* 2a2* a1!~ ua1* 2a2* a1u2

12ua32a1a2u2!1~a38!* ~a32a1a2!

3~2ua1* 2a2* a1u21ua32a1a2u2!#v28v2
3 . ~C13b!

Differential elliptic flow measured with respect to integrat
directed flow yields

d2/1$3%5Re@~12ua1u2!21~a48!* ~a22a1
2!2#v28v1

2

12Re@~a18!* ~a1* 2a2* a1!~a22a1
2!

1~a38!* ~a32a2a1!~12ua1u2!#v18v1v2 .

~C14!

The differential elliptic flow with respect to integrated ellip
tic flow is given by
1-17
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d2/2$2%5Re@12ua2u21~a48!* ~a42a2
2!#v28v2

1Re@~a18!* ~a12a2a1* !1~a38!* ~a32a1a2!#v18v1 ,

~C15a!

and to higher order

d2/2$4%52Re@~12ua2u2!$~12ua2u2!212ua42a2
2u2%

1~a48!* ~a42a2
2!$2~12ua2u2!21ua42a2

2u2%#v28v2
3

2Re@~a18!* ~a12a2a1* !~ ua1* 2a2* a1u2

12ua32a1a2u2!1~a38!* ~a32a1a2!

3~2ua1* 2a2* a1u21ua32a1a2u2!#v18v1
3. ~C15b!

When the acceptance of the detector used for the meas
ment of integrated flow is perfect, i.e.,ap50 for pÞ0, these
formulas reduce to Eqs.~34! and ~35!, i.e., they do not de-
pend on the differential acceptance coefficientsap8 .

APPENDIX D: STATISTICAL ERRORS

In this appendix, we calculate the statistical fluctuatio
of the reconstructed integrated and differential flows, due
the finite number of eventsNevts. More precisely, we calcu
late the covariance matrices

^vn$2k%vn$2l %&2^vn$2k%&^vn$2l %&

and

^vmn/n8 $2k1m11%vmn/n8 $2l 1m11%&2^vmn/n8 $2k1m11%&

3^vmn/n8 $2l 1m11%&

that contain the standard error on each estimatevn$2k% and
vmn/n8 $2k1m11%, and also the linear correlation betwee
estimates of different orders. Throughout the appendix,
neglect nonflow correlations and assume that the detect
perfect.

We first introduce some notations. Ifx is an observable
measured in an event~multiplicity, transverse energy, etc.!,
we denote by$x% the average value ofx over the available
sample of events, which we also call thesampling average:

$x%5
1

Nevts
(
a51

Nevts

xa . ~D1!

The exact statistical average, corresponding to the li
Nevts→`, will be denoted bŷ x&. Note that^$x%&5^x&.

If y denotes another observable associated with e
event, then the covariance of the sampling averages$x% and
$y% is

^$x%$y%&2^x&^y&5
1

Nevts
~^xy&2^x&^y&!, ~D2!

where we have used the property that events are statisti
independent. Wheny5x, the square root of the rhs gives th
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standard deviation of$x% from the exact averagêx&, which
scales as 1/ANevts. This result will prove useful later on.

1. Two-point correlation function

As explained in Sec. II B, one constructs for each even
generating functionGn(z), defined by Eq.~5!. The generat-
ing function of azimuthal correlations is the statistical av
age of this function,̂ Gn(z)&. This quantity, given by Eq.
~15!, does not depend on the phase ofz because of isotropy
On the other hand, one measures experimentally a samp
average$Gn(z)%, which generally has a~weak! dependence
on the phase ofz, due to statistical fluctuations.

In the following, we shall need to evaluate the statistic
fluctuations of the sampling average$Gn(z)% around the true
statistical averagêGn(z)&. These statistical fluctuations ar
characterized by the two-point correlation function

^$Gn~z!%$Gn~z8!%&2^Gn~z!&^Gn~z8!&

5
1

Nevts
~^Gn~z!Gn~z8!&2^Gn~z!&^Gn~z8!&!, ~D3!

where we have used Eq.~D2!. To evaluate the rhs of Eq
~D3!, we first perform the average for a fixed orientation
the reaction planeFR . Using Eqs.~5! and ~12!, we obtain

^Gn~z!Gn~z8!uFR&5S 11
~z1z8!vne2 inFR1c.c.

M

1
z* z81c.c.

M2 D M

.expS ~z1z8!vne2 inFR1
z* z8

M
1c.c.D ,

~D4!

where c.c. denotes the complex conjugate. One must
average overFR :

^Gn~z!Gn~z8!&5E
0

2pdFR

2p
^Gn~z!Gn~z8!uFR&. ~D5!

This function is invariant under a global rotation (z,z8)
→(zeia,z8eia), but depends on the relative phaseeiu

[z* z8/uzz8u betweenz8 andz. We can expand it in Fourie
series with respect tou, in the form

^Gn~z!Gn~z8!&5 (
m52`

1`

Gm~ uzu,uz8u!S z* z8

uzz8u
D m

, ~D6!

where the Fourier coefficients are given by
1-18
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Gm~ uzu,uz8u![E
0

2p du

2p
e2 imu^Gn~ uzueiu!Gn~ uz8u!&

5E
0

2p du

2p
e2 imuE

0

2pdFR

2p
expS UzUvnei (u2nFR)

1Uz8Uvne2 inFR1
uzz8u
M

eiu1c.c.D . ~D7!

If flow is small, more precisely ifvn!1/AM , we can set
vn50 in this equation. Then, the integral overFR is trivial,
while the integral overu yields

Gm~ uzu,uz8u!5I mS 2uzz8u
M D . ~D8!

When flow is larger, the integrations can be performed us
the following identity, valid for realx:

exp~xeif1xe2 if!5 (
q52`

1`

eiqfI q~2x!. ~D9!

Note thatI 2q(2x)5I q(2x). Applying Eq. ~D9! to the three
terms in the exponential in Eq.~D7!, one obtains

Gm~ uzu,uz8u!5 (
q52`

1`

I q~2uzuvn!I q~2uz8uvn!I q1mS 2uzz8u
M D .

~D10!

Whenvn50, all terms in the sum vanish butq50, and one
recovers Eq.~D8!.

2. Integrated flow

Experimentally, the generating function of the cumula
Cn(z) is obtained by replacinĝGn(z)& with the sampling
average$Gn(z)% in Eq. ~7!. The cumulantscn$2k% used to
estimate the integrated flow are then obtained throug
power-series expansion. We first introduce the notation

f ~z!Uzkz* l[
]k

]zk

] l

]z* l
f ~z!U

z50

. ~D11!

With this notation, the cumulantcn$2k%, defined by Eqs.~8!
and ~11!, can be written as

cn$2k%5Cn~z!uzkz* k. ~D12!

The statistical fluctuations of the cumulantscn$2k% are char-
acterized by their covariance matrix:

^cn$2k%cn$2l %&2^cn$2k%&^cn$2l %&

5^Cn~z!Cn~z8!&2^Cn~z!&^Cn~z8!&u uzu2kuz8u2l ~D13!

Let us evaluate the rhs of this equation. We assume tha
multiplicity is large enough, so thatCn(z), defined through
Eq. ~7!, reduces to ln$Gn(z)% for the sample of events. Ex
panding the logarithm to first order around^Gn(z)&, one ob-
tains
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g

s

a

he

^Cn~z!Cn~z8!&2^Cn~z!&^Cn~z8!&

5
^$Gn~z!%$Gn~z8!%&2^Gn~z!&^Gn~z8!&

^Gn~z!&^Gn~z8!&

5
1

Nevts
S ^Gn~z!Gn~z8!&

^Gn~z!&^Gn~z8!&
21D , ~D14!

where we have used Eq.~D3!. According to Eq.~D13!, we
must isolate the terms proportional touzu2kuz8u2l in the
power-series expansion, i.e., terms that do not depend on
phases ofz and z8. The denominator, given by Eq.~15!,
depends only onuzu anduz8u. On the other hand, the numera
tor depends on the relative phase ofz andz8. The isotropic
part is the termm50 in the Fourier expansion~D6!. We thus
obtain:

^cn$2k%cn$2l %&2^cn$2k%&^cn$2l %&

5
1

Nevts
S G0~ uzu,uz8u!

I 0~2uzuvn!I 0~2uz8uvn!
21D uuzu2kuz8u2l,

~D15!

whereG0(uzu,uz8u) is given by Eq.~D10! with m50.
The estimate of integrated flowvn$2k% is obtained by

expanding Eq.~16! to order uzu2k. Using Eq. ~D12!, it is
related tocn$2k% by

cn$2k%5 lnI 0~2uzuvn$2k%!uzkz* k. ~D16!

Using this equation, one easily relates the covariance ma
of the estimatesvn$2k% to that of the corresponding cumu
lants. Noting that

lnI 0~2uzu~vn1dv !!2 lnI 0~2uzuvn!52uzu
I 1~2uzuvn!

I 0~2uzuvn!
dv,

~D17!

we obtain from Eq.~D16!

^cn$2k%cn$2l %&2^cn$2k%&^cn$2l %&

54uzz8u
I 1~2uzuvn!

I 0~2uzuvn!

I 1~2uz8uvn!

I 0~2uz8uvn!
U

uzu2kuz8u2l

~^vn$2k%vn$2l %&

2^vn$2k%&^vn$2l %&!. ~D18!

Using the expression of the covariance matrix of the cum
lants obtained above, Eq.~D15!, one thus obtains a compac
expression for the covariance matrix of the estimatesvn$2k%.

Before giving explicit results for the lowest-order cum
lants, let us discuss the weak flow and strong flow limits
vn!1/AM , G0(uzu,uz8u) reduces to Eq.~D8!, and the rhs of
Eq. ~D15! depends only onuzz8u, thus terms withkÞ l van-
ish: correlations between different cumulants vanish in t
limit, so that different estimates ofvn are uncorrelated. If
vn@1/AM , one can expand Eq.~D10! to order 1/M , which
yields
1-19
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G0~ uzu,uz8u!5I 0~2uzuvn!I 0~2uz8uvn!

1
2uzz8u

M
I 1~2uzuvn!I 1~2uz8uvn!. ~D19!

Inserting this expression into Eq.~D15!, and comparing with
Eq. ~D18!, we obtain

^vn$2k%vn$2l %&2^vn$2k%&^vn$2l %&5
1

2MNevts
.

~D20!

In this limit, all estimatesvn$2k% coincide and the error on
the integrated flow is 1/A2MNevts, independent ofk. This
result can be easily understood: whenvn is large compared
to 1/AM , the reaction planeFR can be reconstructed wit
very good accuracy. Then, the integrated flowvn$2k% can be
obtained as the average over all particles of all events
cos@n(fj2FR)#. Since the total number of particles
MNevts, one evaluates (1/MNevts)( j 51

MNevtscos@n(fj2FR)#,
and the average value of the square of this quantity
1/(2MNevts) for random angles. Thus the resulting statistic
error is 1/A2MNevts.

Finally, in more general case whenvn and 1/AM are of
the same order of magnitude, explicit expressions for
lowest-order estimates are obtained by expanding Eqs.~D15!
and ~D18! in power series ofuzu2 and uz8u2. The standard
deviations on the first-order estimates are given by

~dvn$2%!2[^vn$2%2&2^vn$2%&25
1

2MNevts

112x2

2x2 ,

~dvn$4%!2[^vn$4%2&2^vn$4%&2

5
1

2MNevts

114x21x412x6

2x6 ,

~dvn$6%!2[^vn$6%2&2^vn$6%&2

5
1

2MNevts

3118x219x4128x6112x8124x10

24x10
,

~D21!

with x2[Mvn
2 . In the limit x@1, the results reduce to Eq

~D20!.
The values ofdvn$2k% given by Eqs.~D21! are plotted in

Fig. 2 as a function ofx. We have takenNevts5105 events,
with multiplicity M5200 each. With these values,x51 cor-
responds tovn.7%. Some comments on these results:

The statistical error increases rapidly asvn decreases: if
vn53% ~i.e., x50.42), the statistical error using the fourt
order cumulant is reasonably small, less than 0.2%. Bu
vn51.5% (x50.21) the statistical error becomes of th
same magnitude as the flow itself. Such small values of
flow can be studied only with a higher multiplicity and/or
very large number of events.
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While the lowest-order estimatevn$2% always has the
smallest statistical error, the statistical error onvn$6% is
slightly smaller~by at most 5%! than the error onvn$4% for
x.1.

The correlation between estimates of different orders
given by

^vn$2%vn$4%&2^vn$2%&^vn$4%&5
1

2MNevts
,

^vn$2%vn$6%&2^vn$2%&^vn$6%&5
1

2MNevts
,

^vn$4%vn$6%&2^vn$4%&^vn$6%&5
1

2MNevts

3x41x612x8

2x8 .

~D22!

Figure 2 displays the linear correlationc$2k%,$2l % between
vn$2k% andvn$2l % with kÞ l . We recall that the linear cor
relationc between two random variablesx andy is defined as

c[
^xy&2^x&^y&

A^x2&2^x&2A^y2&2^y&2
. ~D23!

c always lies between21 and 1; these two limiting case
corresponding to a linear relationy5ax, while c50 if x and
y are uncorrelated. As expected from the discussion follo
ing Eq. ~D20!, different estimates are uncorrelated ifx!1,
but the correlation becomes stronger and stronger as
resolutionx increases.

Finally, we would like to point out that the statistical fluc
tuations of the estimatevn$2k% around the true valuevn are
not Gaussian. Indeed, it can be shown that the fluctuation
the cumulants are generally Gaussian. Thus, accordin
Eqs. ~17!, the fluctuations of the variablej[vn$2k%2k are
Gaussian, but not the fluctuations ofvn$2k% itself. We may
write

FIG. 2. Top: statistical errors onvn$2%, vn$4% and vn$6% for
Nevts5105 andM5200, as a function ofx[vnAM . Bottom: linear
correlation c$2k%,$2l % between each pair of estimatesvn$2k% and
vn$2l %, with 1<k<3 and 1< l<3.
1-20
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dN

dj
5

1

A2ps
expS 2

~j2vn
2k!2

2s2 D , ~D24!

wheres is the standard deviation onj. It is related to the
deviationdvn$2k%, Eqs.~D21!, by

s52kvn
2k21dvn$2k%. ~D25!

In order to illustrate the non-Gaussian character of the fl
tuations ofvn$2k%, we display in Fig. 3 the distribution o
vn$2%, vn$4% andvn$6% when the average value ofj in Eq.
~D25! is only one standard deviation above zero, i.e., wh
s5vn

2k . Then, using Eq.~D24!, the probability thatj,0 is
about 16%, in which casevn$2k% is undefined. One note
that for the 84% remaining cases, the distribution ofvn$2k%
becomes narrower as 2k increases.

3. Differential flow

The generating function of the cumulants used for diff
ential flow, Dp/n(z), is the ratio of two quantities: the nu
merator of the rhs of Eq.~26! is evaluated from a sample o
N8 protons, while the denominator is calculated from t
same sample of events as for the integrated flow, tha
Nevts. Since the measurement of differential flow is usua
performed in a narrow phase-space window, we neglect
contribution of the denominator to the statistical error. W
thus write

Dp/n~z!5
$eipcGn~z!%

^Gn~z!&
, ~D26!

where the denominator is given by Eq.~15!.
The cumulantsdmn/n$2k1m11% defined by Eqs.~27!

and ~29! can be written in the form

dmn/n$2k1m11%5 1
2 @Dmn/n~z!1Dmn/n* ~z* !#uzk1mz* k.

~D27!

We now evaluate their covariance matrix. For simplicity, w
shall assume that there is no differential flow, i.e., that thec

FIG. 3. Distribution ofvn$2%, vn$4% and vn$6%, scaled by the
theoretical valuevn .
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distribution is isotropic, so that̂Dp/n(z)&50, and only fluc-
tuations remain. Using Eq.~D2! and the definition~D26!, we
thus obtain

^Dp/n~z!Dp/n~z8!&50

^Dp/n~z!Dp/n* ~z8!&5
1

N8

^Gn~z!Gn~z8!&

^Gn~z!&^Gn~z8!&
. ~D28!

We recognize in the last equation the two-point functi
studied in Appendix D1. The covariance matrix of the cum
lants ~D27! can thus be written

^dmn/n$2k1m11%dmn/n$2l 1m11%&

5
1

4N8
S ^Gn~z!Gn~z8* !&

^Gn~z!&^Gn~z8* !&

1
^Gn~z* !Gn~z8!&

^Gn~z* !&^Gn~z8!&
D U

zk1mz* kz8 l 1mz8* l

5
1

2N8
U ^Gn~z* !Gn~z8!&

^Gn~z!&^Gn~z8!&
U

zk1mz* kz8 l 1mz8* l

. ~D29!

Using Eq. ~15! and the Fourier decomposition of the two
point function~D6!, we obtain

^dmn/n$2k1m11%dmn/n$2l 1m11%&

5
1

2N8

Gm~ uzu,uz8u!

I 0~2uzuvn!I 0~2uz8uvn!
S zz8

uzz8u
D mU

zk1mz* kz8 l 1mz8* l

,

~D30!

whereGm(uzu,uz8u) is given by Eq.~D10!.

FIG. 4. Left ~resp. right!: statistical properties of the estimate
of vn/n8 ~resp.v2n/n8 ). Top: statistical errors onvn/n8 $2% andvn/n8 $4%
~resp.v2n/n8 $3% and v2n/n8 $5%) for N8553105 and M5200, as a
function of x[vnAM . Bottom: linear correlation betweenvn/n8 $2%
andvn/n8 $4% ~resp.v2n/n8 $3% andv2n/n8 $5%).
1-21
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The estimate of differential flowvmn/n8 $2k1m11% is ob-
tained by expanding Eq.~31! to orderzk1mz* k. Using Eq.
~D27!, it is related todmn/n$2k1m11% by

dmn/n$2k1m11%5
I m~2uzuvn!

I 0~2uzuvn! S z

uzu D
mU

zk1mz* k

3vmn/n8 $2k1m11%. ~D31!

Using this equation, one easily relates the covariance ma
of the estimatesvmn/n8 $2k1m11% to that of the correspond
ing cumulants, given by Eq.~D30!:

I m~2uzuvn!

I 0~2uzuvn!

I m~2uz8uvn!

I 0~2uz8uvn!
U

uzu2kuz8u2l

^vmn/n8 $2k1m11%vmn/n8

3$2l 1m11%&

5
1

2N8

Gm~ uzu,uz8u!

I 0~2uzuvn!I 0~2uz8uvn!
U

uzu2kuz8u2l

. ~D32!

Let us discuss the weak flow and strong flow limits. Wh
vn!1/AM , Gm(uzu,uz8u) is given by Eq.~D8!, and terms with
kÞ l vanish: as in the case of integrated flow, correlatio
between estimates of different orders vanish in this lim
When vn@1/AM , expanding Eq.~D10! to leading order in
1/M , we obtain

Gm~ uzu,uz8u!5I m~2uzuvn!I m~2uz8uvn!. ~D33!

Then, the covariance matrix, Eq.~D32!, reduces to

^vmn/n8 $2k1m11%vmn/n8 $2l 1m11%&2^vmn/n8 $2k1m11%&

3^vmn/n8 $2l 1m11%&5
1

2N8
. ~D34!
t.
,
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This result can be simply understood by repeating the ar
ment used in the case of integrated flow.

In the more general case whenvn and 1/AM are of the
same order of magnitude, the following lowest-order form
las are derived by expanding Eq.~D32! in power series. For
m51,

^vn/n8 $2%2&2^vn/n8 $2%&25
1

2N8

11x2

x2

^vn/n8 $2%vn/n8 $4%&2^vn/n8 $2%&^vn/n8 $4%&5
1

2N8

^vn/n8 $4%2&2^vn/n8 $4%&25
1

2N8

216x21x41x6

x6

~D35!

with x2[Mvn
2 . For m52,

^v2n/n8 $3%2&2^v2n/n8 $3%&25
1

2N8

214x21x4

x4

^v2n/n8 $3%v2n/n8 $5%&2^v2n/n8 $3%&^v2n/n8 $5%&5
1

2N8

31x2

x2

^v2n/n8 $5%2&2^v2n/n8 $5%&2

5
1

2N8

6124x219x4110x614x8

4x8 ~D36!

Whenx@1, these results reduce to Eq.~D34!. Figure 4 dis-
plays the variation withx of the standard errors on the var
ous estimates and the linear correlation between cumul
of different orders. The behavior is qualitatively the same
for integrated flow.
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